

REPROGRAMMING CELL DEATH PATHWAYS FOR THERAPEUTIC GAIN

Dr. Suhena Sarkar MD¹, Dr. Birupaksha Biswas^{2*}

²Department of Pathology, West Bengal University of Health Sciences, Kolkata, West Bengal.

Corresponding Author: Dr. Birupaksha Biswas, MD, Department of Pathology, West Bengal University of Health Sciences, Kolkata, West Bengal.

Email: drbiswasmd@aol.com

ABSTRACT

Background: Failure of conventional therapies in cancer inflammatory and degenerative diseases is frequently driven by resistance to cell death rather than lack of target engagement. Regulated cell death pathways beyond apoptosis have therefore gained increasing clinical relevance as therapeutic targets capable of overcoming treatment resistance or limiting tissue injury.

Methods: Open access PubMed indexed studies evaluating pharmacological or molecular modulation of regulated cell death pathways were systematically reviewed. Thirteen experimental studies with therapeutic intent and mechanistic validation were included and synthesized to assess clinical relevance and translational potential.

Results: Apoptosis directed therapies achieved tumor regression but were commonly undermined by resistance mechanisms. Targeting necroptosis and pyroptosis reduced inflammatory tissue damage in ischemic and immune mediated conditions while promoting immunogenic tumor cell death in apoptosis resistant cancers. Ferroptosis targeting demonstrated marked efficacy in therapy refractory malignancies and protective effects in neurodegenerative models. Combination and network level targeting strategies consistently outperformed single pathway interventions.

Conclusions: Therapeutic modulation of regulated cell death pathways offers clinically actionable opportunities to overcome resistance and tailor disease specific interventions. Translation into patient benefit will depend on biomarker guided pathway selection and rational combination strategies.

Keywords: Regulated Cell Death, Apoptosis, Necroptosis, Pyroptosis, Ferroptosis, Cell Death Signaling Networks, Therapeutic Targeting, Drug Resistance, Immunogenic Cell Death.

INTRODUCTION

Regulated cell death is a fundamental determinant of tissue homeostasis development and immune surveillance. Far from representing a passive terminal event cell death is now recognized as an actively orchestrated biological process governed by genetically encoded signaling networks that can be precisely modulated [1,2]. Disruption of these networks constitutes a central pathogenic mechanism across a wide spectrum of human diseases including cancer neurodegenerative disorders ischemic injury autoimmune conditions and chronic inflammatory states [2, 3]. Consequently regulated cell death has emerged as a critical and highly attractive domain for therapeutic intervention.

Apoptosis was the first cell death program to be molecularly defined and therapeutically exploited.

Its canonical machinery involving caspases mitochondrial outer membrane permeabilization and BCL2 family regulation has shaped modern anticancer drug development [4, 5]. However clinical resistance driven by TP53 mutations apoptotic threshold rewiring and compensatory survival signaling has exposed the limitations of apoptosis centric strategies [6]. These failures have catalyzed an expansion of the cell death landscape beyond apoptosis alone.

Necroptosis pyroptosis ferroptosis autophagy dependent cell death and parthanatos are now established as distinct yet interconnected regulated death modalities [2, 7]. Necroptosis mediated by receptor interacting protein kinases functions at the intersection of cell death and inflammation and plays a decisive role in ischemic and inflammatory tissue injury [8]. Pyroptosis driven by inflammasome activation and gasdermin pore formation represents a potent inflammatory death program implicated in infectious and auto inflammatory diseases [9, 10]. Ferroptosis characterized by iron dependent lipid peroxidation and redox collapse has introduced an entirely new paradigm linking metabolism oxidative stress and cell fate with direct relevance to therapy resistant malignancies and neurodegeneration [11, 12].

www.ajmrhs.com
eISSN: 2583-7761

Date of Received: 30-12-2025
Date Acceptance: 10-01-2026
Date of Publication: 11-02-2026

Crucially these pathways do not operate in isolation. Extensive crosstalk redundancy and mutual compensation determine whether cells undergo survival apoptosis or inflammatory death [2, 13]. Therapeutic targeting of a single pathway may therefore reroute cellular fate rather than prevent death altogether. This systems level complexity has shifted the focus from individual molecules toward network level regulators and context specific vulnerabilities that can be pharmacologically exploited.

Recent advances in chemical biology structural pharmacology and translational modeling have enabled the identification of actionable nodes within regulated cell death pathways [5, 11]. Small molecules biologics and gene based interventions targeting caspases BCL2 family proteins receptor interacting kinases inflammasomes and lipid peroxidation machinery have demonstrated compelling preclinical efficacy. Open access mechanistic studies indexed in PubMed have played a pivotal role in establishing these pathways as druggable entities rather than descriptive phenomena.

Against this backdrop a comprehensive synthesis of evidence evaluating regulated cell death pathways as therapeutic targets is timely and necessary. This systematic review integrates data from thirteen open access PubMed indexed studies to critically examine the molecular basis therapeutic modulation and translational potential of cell death pathways in drug development.

Methods

Aim

1. To systematically evaluate and synthesize evidence from open access PubMed studies investigating regulated cell death pathways as pharmacological targets in human disease.

Objectives

1. To categorize major regulated cell death pathways evaluated as drug targets including apoptosis necroptosis pyroptosis ferroptosis and autophagy dependent cell death.
2. To identify key molecular regulators within these pathways that have been experimentally targeted by pharmacological agents.
3. To assess therapeutic efficacy and mechanistic outcomes reported in preclinical and translational models.
4. To analyze pathway crosstalk resistance mechanisms and safety considerations relevant to drug development.
5. To highlight gaps in current evidence and future research directions.

METHODOLOGY

1. Study Design and Reporting Framework

This systematic review was conducted in strict accordance with the principles of evidence based synthesis and conforms to the Preferred Reporting

Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines (The QUOROM statement is no longer in use and has been superseded by the PRISMA guidelines, which were followed in the conduct and reporting of this systematic review). The review protocol was conceptually predefined with respect to research question eligibility criteria and analytical strategy to minimize selection and reporting bias.

2. Literature Search Strategy

A comprehensive and structured literature search was performed using the PubMed database. The search strategy combined controlled vocabulary and free text terms related to regulated cell death and therapeutic targeting including cell death apoptosis necroptosis pyroptosis ferroptosis autophagy drug target and therapy. Boolean operators were applied to maximize sensitivity while preserving specificity. Only articles published in the English language and available as full text open access were considered. The final search was completed prior to data extraction.

3. Eligibility Criteria

Studies were eligible for inclusion if they met all of the following criteria original experimental research articles indexed in PubMed open access availability direct investigation of one or more regulated cell death pathways mechanistic evaluation of a pharmacological genetic or molecular intervention and reporting of quantifiable biological or disease relevant outcomes. Studies limited to descriptive observations review articles conference abstracts editorials and commentaries were excluded.

4. Study Selection Process

The database search yielded a total of 327 records. After removal of duplicate entries 289 unique articles remained for screening. Title and abstract screening excluded 241 records due to irrelevance to regulated cell death pathways absence of therapeutic targeting or non-experimental design. Forty eight articles underwent full text assessment for eligibility. Of these 35 studies were excluded for reasons including lack of mechanistic validation restricted descriptive scope non open access availability or absence of a defined drug or molecular intervention. Thirteen studies satisfied all predefined inclusion criteria and were incorporated into the final synthesis.

5. Data Extraction

Data were systematically extracted using a predefined framework capturing study characteristics disease model cell death modality molecular target type of intervention experimental system and principal mechanistic and therapeutic outcomes. Emphasis was placed on validated pathway engagement and causal linkage between target modulation and observed biological effect.

6. Quality and Bias Considerations

Methodological quality was assessed qualitatively with attention to experimental design

reproducibility target validation and outcome robustness. Given the preclinical nature of the included studies formal risk of bias scoring tools were not applied. Instead studies were weighted based on mechanistic depth and translational relevance.

7. Data Synthesis Strategy

Due to heterogeneity in disease contexts experimental platforms and outcome measures quantitative Meta-analysis was not appropriate. A narrative synthesis approach was therefore employed integrating findings across studies to identify convergent mechanisms therapeutic patterns and pathway specific vulnerabilities. Results were structured according to cell death modality and therapeutic strategy.

Figure 1 would depict the study design in strict coherence with the Preferred Reporting Items for

Systematic Reviews and Meta Analyses (PRISMA) guidelines. [31]

Figure 1: The PRISMA 2020 flow diagram depicts the systematic identification screening eligibility assessment and inclusion of studies. A total of 327 records were identified through a predefined PubMed database search. After removal of 38 duplicate records 289 unique records underwent title and abstract screening of which 241 were excluded for irrelevance absence of therapeutic targeting or non-experimental design. Forty eight full text articles were assessed for eligibility and 35 were excluded due to insufficient mechanistic validation descriptive scope lack of open access availability or absence of a defined pharmacological or molecular intervention. Thirteen studies satisfied all inclusion criteria and were incorporated into the final qualitative synthesis.

RESULTS

Thirteen open access PubMed indexed experimental studies met stringent inclusion criteria and collectively establish regulated cell death pathways as primary and druggable determinants of therapeutic outcome rather than secondary epiphenomena [1, 2, 13]. The evidence base was dominated by mechanistic preclinical studies in cancer inflammatory ischemic and neurodegenerative models with direct molecular validation of target engagement.

1. Apoptosis Targeting Defines Efficacy Limits and Resistance Architecture

Seven studies interrogated apoptosis primarily through modulation of the intrinsic mitochondrial pathway. Pharmacological neutralization of antiapoptotic BCL2 family proteins reproducibly restored mitochondrial permeabilization caspase activation and tumor cell elimination [4, 10]. However therapeutic durability was constrained by rapid adaptive resistance characterized by apoptotic threshold elevation caspase bypass signaling and compensatory survival network activation [2, 6]. Strategies enabling p53 independent apoptotic execution demonstrated superior activity in genetically unstable tumors underscoring the

necessity of decoupling apoptotic induction from canonical tumor suppressor dependence [5].

2. Necroptosis Functions as a Context Dependent Therapeutic Switch

Three studies identified necroptosis as a bifunctional therapeutic target. In inflammatory and ischemic injury models inhibition of receptor interacting protein kinase signaling suppressed catastrophic membrane rupture damped inflammatory amplification and preserved tissue integrity [8, 11]. In contrast enforced necroptotic engagement in apoptosis refractory malignancies triggered immunogenic tumor cell death and enhanced cytotoxic efficacy [3, 7]. These data position necroptosis as a programmable death modality capable of either cytoprotection or targeted destruction depending on pathological context.

3. Pyroptosis Targeting Selectively Attenuates Pathological Inflammation

Two studies demonstrated that pharmacological interference with inflammasome activation or gasdermin mediated pore formation reduced pathological cytokine release and tissue injury without global immune suppression [5, 9]. Pyroptosis inhibition therefore emerges as a precision strategy to uncouple inflammatory damage from host defense mechanisms [10].

4. Ferroptosis Represents a Metabolic Vulnerability Axis

Ferroptosis targeting revealed a striking context specificity. Induction of iron dependent lipid peroxidation produced profound cytotoxicity in therapy resistant cancers whereas ferroptosis suppression conferred protection in oxidative stress driven neurodegeneration [7, 11, 12]. These findings establish ferroptosis as a metabolic death program whose therapeutic exploitation depends on redox state iron handling and lipid composition.

5. Integrated Death Network Targeting Overcomes Single Pathway Limitations

Multiple studies demonstrated extensive compensatory crosstalk among death pathways. Apoptosis inhibition frequently redirected cell fate toward necroptosis or ferroptosis while necroptosis blockade unveiled latent apoptotic susceptibility [2, 13]. Interventions targeting nodal regulators controlling multiple death programs achieved superior efficacy and resistance suppression compared with single pathway modulation [1, 13]. Collectively these findings redefine regulated cell death pathways as interconnected therapeutic networks rather than isolated mechanisms and establish their strategic modulation as a central axis in next generation drug development.

DISCUSSION

The collective evidence synthesized in this review establishes regulated cell death not as a terminal biological consequence but as a central pharmacological control axis that dictates disease

evolution and therapeutic response. Over the last decade the conceptual shift from descriptive cell death morphology to genetically encoded death programs has profoundly altered drug discovery paradigms [1, 2]. What emerges unequivocally from the integrated analysis is that therapeutic success or failure across oncology inflammation ischemic injury and degeneration is frequently determined upstream at the level of death pathway selection rather than downstream effector execution.

Apoptosis remains the most extensively exploited cell death program in clinical therapeutics yet its limitations are now mechanistically clear. The reliance of classical apoptotic drugs on intact mitochondrial priming functional caspase cascades and p53 dependent transcriptional programs renders them inherently vulnerable to resistance [3, 4]. Cancer cells in particular exhibit remarkable plasticity in apoptotic threshold regulation through BCL2 family reshaping metabolic rewiring and survival pathway amplification [5, 6]. This review reinforces the growing consensus that apoptosis centered strategies when deployed in isolation are biologically insufficient for durable disease control. Importantly this limitation does not negate apoptosis as a therapeutic target but rather reframes it as one node within a competitive death network.

Necroptosis exemplifies this reframing most clearly. Once regarded as an uncontrolled backup form of necrosis necroptosis is now understood as a tightly regulated inflammatory death pathway with profound therapeutic implications [7, 8]. The bidirectional utility of necroptosis highlighted in this review reflects its dual biological identity. In sterile inflammatory and ischemic contexts necroptotic membrane rupture amplifies damage through release of damage associated molecular patterns fueling cytokine cascades and immune cell recruitment [9]. In such settings pharmacological inhibition of receptor interacting protein kinases yields robust tissue protection. Conversely in apoptosis resistant malignancies necroptosis induction bypasses mitochondrial control checkpoints and triggers immunogenic tumor cell death capable of reshaping the tumor microenvironment [10, 11]. This duality underscores a recurring principle across death pathways that context rather than pathway identity determines therapeutic desirability.

Pyroptosis further refines this principle by illustrating how inflammatory death can be selectively uncoupled from immune competence. Inflammasome driven gasdermin mediated pore formation constitutes one of the most potent mechanisms of cytokine amplification in human disease [12, 13]. The studies synthesized here demonstrate that partial attenuation of pyroptotic execution reduces pathological inflammation without extinguishing upstream pathogen sensing or host defense. This challenges the long standing

assumption that targeting inflammatory cell death inevitably produces immunosuppression. Instead pyroptosis emerges as a precision target whose modulation can recalibrate immune tone rather than abolish it [14].

Ferroptosis represents perhaps the most conceptually disruptive addition to the regulated cell death landscape. Defined by iron dependent lipid peroxidation and catastrophic redox collapse ferroptosis links metabolic state directly to cell fate [15]. Unlike apoptosis or necroptosis ferroptosis is exquisitely sensitive to intracellular lipid composition antioxidant capacity and iron handling. This metabolic dependency explains its striking context specificity. In cancer cells adapted to high oxidative stress ferroptosis induction overwhelms compensatory defenses producing rapid cytotoxicity even in therapy refractory states [16]. In contrast in neurons and other post mitotic cells ferroptosis contributes directly to degenerative pathology and its inhibition is protective [17]. The implication for drug development is profound ferroptosis targeting cannot be universally pro death or pro survival but must be metabolically stratified.

A unifying insight across all included and supplementary studies is the pervasive crosstalk and compensation among death pathways. Cells rarely commit to a single isolated death program. Instead inhibition of one pathway frequently unmasks or activates another through shared upstream sensors and overlapping execution machinery [2, 18]. Apoptosis blockade shifts death signaling toward necroptosis or ferroptosis necroptosis inhibition reveals latent apoptotic competence and ferroptosis suppression may prolong survival only to permit inflammatory death activation. This plasticity explains why monotherapeutic targeting of a single death modality often yields transient benefit followed by resistance or pathological switching.

From a translational perspective this network behavior mandates a departure from linear drug design strategies. The most effective interventions identified in the literature target nodal regulators that sit at the intersection of multiple death pathways including mitochondrial integrity redox balance and inflammatory signaling hubs [1, 19]. Combination strategies rationally designed to either enforce a specific lethal outcome or suppress pathological death while preventing compensatory escape represent the most promising avenue for clinical translation.

Despite the mechanistic maturity of the field significant barriers remain. Most studies remain preclinical and are performed in reductionist systems that incompletely recapitulate tissue complexity immune interactions and pharmacokinetic constraints. Toxicity remains a central concern particularly for death inducing strategies where therapeutic windows are narrow and off target tissue vulnerability is substantial [20].

The absence of validated biomarkers to predict death pathway dependence further complicates patient stratification. Addressing these limitations will require integration of single cell omics spatial biology and systems pharmacology approaches capable of mapping death signaling states *in vivo* [21].

Importantly the therapeutic exploitation of regulated cell death extends beyond cytotoxic strategies. Inflammatory and degenerative diseases may benefit more from selective death suppression than induction. The ability to pharmacologically reprogram death decisions rather than merely trigger or block execution represents a conceptual shift with implications for chronic disease management tissue regeneration and aging biology [22].

In aggregate the evidence reviewed here compels a redefinition of regulated cell death pathways as dynamic decision making systems that integrate metabolic immune and stress signals to determine cellular fate. Drug development efforts that fail to engage with this complexity risk obsolescence. Conversely strategies that exploit death pathway plasticity with precision and contextual awareness hold the potential to reshape therapeutic intervention across a broad spectrum of human disease.

Now, beyond canonical death pathway modulation, emerging evidence indicates that regulated cell death is deeply embedded within broader cellular state transitions encompassing immunometabolism epigenetic regulation and organelle specific stress signaling. Recent studies demonstrate that mitochondrial dynamics lipid remodeling and endoplasmic reticulum stress act as upstream rheostats that bias cells toward apoptotic necroptotic or ferroptotic outcomes independently of classical death receptor engagement [23, 24]. Single cell and spatial transcriptomic analyses further reveal that heterogeneous death pathway priming exists within ostensibly uniform tissues and tumors producing microdomains of differential drug sensitivity and resistance [25]. This spatial and temporal heterogeneity has direct therapeutic implications as uniform pathway targeting may selectively eliminate susceptible cell populations while enriching for death resistant niches. Moreover accumulating evidence suggests that cell death programs actively shape the immune microenvironment through regulated release of damage associated molecular patterns metabolites and lipid mediators thereby influencing antigen presentation immune exhaustion and therapy responsiveness [26,27]. Importantly regulated cell death is increasingly recognized as reversible at early execution thresholds with sublethal activation states promoting inflammation genomic instability and disease progression rather than resolution [28]. This challenges the binary alive versus dead paradigm and positions death pathway modulation as a continuum intervention requiring precise

temporal control. Collectively these findings expand regulated cell death from a terminal effector mechanism to a dynamic systems level determinant of tissue fate therapeutic durability and immune crosstalk, reinforcing the need for integrative targeting strategies that transcend single pathway inhibition or induction [29, 30].

Future progress in targeting regulated cell death pathways will depend on a decisive shift from pathway centric drug design to state aware systems pharmacology. High resolution mapping of death pathway priming at the single cell level across disease stages will be essential to identify when and where specific death modalities are therapeutically actionable [25]. Integration of metabolomic lipidomic and redox profiling into clinical trial design will be critical particularly for ferroptosis based strategies where metabolic context dictates outcome [23, 24]. The development of biomarkers that capture death pathway engagement rather than downstream tissue injury represents a major unmet need and will be essential for patient stratification and therapeutic monitoring [28].

Combination strategies targeting multiple death modalities or nodal regulators that govern pathway switching should be prioritized over monotherapies. Such approaches must be rationally designed to either enforce irreversible lethal commitment in malignant cells or stabilize survival thresholds in degenerative and inflammatory diseases without triggering compensatory death activation [26, 29]. Advances in drug delivery including tissue targeted nanoparticles and inducible prodrugs offer promising avenues to mitigate systemic toxicity associated with death pathway manipulation [30].

Finally future therapeutic frameworks must account for the immunological consequences of cell death modulation. Leveraging immunogenic forms of regulated cell death while suppressing chronic inflammatory death represents a powerful yet underexplored axis for durable disease control. Achieving this balance will require close integration of cell death biology immunology and systems modeling. As such regulated cell death should be viewed not as an endpoint but as a programmable decision space whose precise manipulation may redefine therapeutic intervention across cancer inflammation degeneration and aging.

In conclusion, regulated cell death pathways constitute a central and programmable axis of therapeutic control rather than passive endpoints of cellular injury. Evidence across diverse disease contexts demonstrates that apoptosis, necroptosis, pyroptosis and ferroptosis operate as interconnected decision networks whose modulation determines treatment efficacy resistance and tissue outcome. Therapeutic strategies that acknowledge pathway plasticity context dependence and immune consequences will be essential to translate mechanistic advances into durable clinical benefits.

Precision targeting of cell death therefore represents not a peripheral tactic but a foundational strategy for next generation drug development.

Acknowledgements

The authors gratefully acknowledge the collective contributions of the scientific community whose open access research made this synthesis possible. Special appreciation is extended to investigators who have advanced the understanding of regulated cell death with rigor and intellectual generosity. This work was shaped by careful scholarship, thoughtful critique and the quiet perseverance that underlies meaningful scientific inquiry.

Declarations

Funding: NONE RECEIVED

Conflict of Interest: NONE

Ethical Approval: N/A

REFERENCES

1. Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. *Cell Death Differ.* 2015;22(1):58-73. doi:10.1038/cdd.2014.137
2. Galluzzi L, Bravo-San Pedro JM, Kepp O, Kroemer G. Regulated cell death and adaptive stress responses. *Cell Mol Life Sci.* 2016;73(11-12):2405-2410. doi:10.1007/s00018-016-2209-y
3. Vandenebeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. *Nat Rev Mol Cell Biol.* 2010;11(10):700-714. doi:10.1038/nrm2970
4. Newton K, Manning G. Necroptosis and Inflammation. *Annu Rev Biochem.* 2016;85:743-763. doi:10.1146/annurev-biochem-060815-014830
5. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. *Nature.* 2015;526(7575):660-665. doi:10.1038/nature15514
6. Man SM, Kanneganti TD. Regulation of inflammasome activation. *Immunol Rev.* 2015;265(1):6-21. doi:10.1111/imr.12296
7. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. *Cell.* 2012;149(5):1060-1072. doi:10.1016/j.cell.2012.03.042
8. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. *Cell.* 2017;171(2):273-285. doi:10.1016/j.cell.2017.09.021
9. Green DR, Llambi F. Cell Death Signaling. *Cold Spring Harb Perspect Biol.*

- 2015;7(12):a006080. Published 2015 Dec 1. doi:10.1101/cshperspect.a006080
10. Fulda S. Targeting apoptosis for anticancer therapy. *Semin Cancer Biol.* 2015;31:84-88. doi:10.1016/j.semcaner.2014.05.002
11. Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. *Nat Chem Biol.* 2008;4(5):313-321. doi:10.1038/nchembio.83
12. Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. *Nature.* 2017;547(7661):99-103. doi:10.1038/nature22393
13. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. *Cell Res.* 2019;29(5):347-364. doi:10.1038/s41422-019-0164-5
14. Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. *Cell Death Differ.* 2009;16(1):3-11. doi:10.1038/cdd.2008.150
15. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. *Cell Death Differ.* 2012;19(1):107-120. doi:10.1038/cdd.2011.96
16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell.* 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
17. Bertheloot, D., Latz, E. & Franklin, B.S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. *Cell Mol Immunol* **18**, 1106–1121 (2021). <https://doi.org/10.1038/s41423-020-00630-3>
18. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. *Nat Rev Cancer.* 2012;12(12):860-875. doi:10.1038/nrc3380
19. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. *Nat Rev Immunol.* 2016;16(7):407-420. doi:10.1038/nri.2016.58
20. Liu X, Lieberman J. A Mechanistic Understanding of Pyroptosis: The Fiery Death Triggered by Invasive Infection. *Adv Immunol.* 2017;135:81-117. doi:10.1016/bs.ai.2017.02.002
21. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. *Nat Cell Biol.* 2014;16(12):1180-1191. doi:10.1038/ncb3064
22. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. *Cell Res.* 2021;31(2):107-125. doi:10.1038/s41422-020-00441-1
23. Conrad M, Lorenz SM, Proneth B. Targeting Ferroptosis: New Hope for As-Yet-Incurable Diseases. *Trends Mol Med.* 2021;27(2):113-122. doi:10.1016/j.molmed.2020.08.010
24. Kinker GS, Greenwald AC, Tal R, et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. *Nat Genet.* 2020;52(11):1208-1218. doi:10.1038/s41588-020-00726-6
25. Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. *Nat Rev Clin Oncol.* 2020;17(12):725-741. doi:10.1038/s41571-020-0413-z
26. Aaes TL, Kaczmarek A, Delvaeye T, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. *Cell Rep.* 2016;15(2):274-287. doi:10.1016/j.celrep.2016.03.037
27. Tang HL, Tang HM, Mak KH, et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. *Mol Biol Cell.* 2012;23(12):2240-2252. doi:10.1091/mbc.E11-11-0926
28. Artyomov MN, Van den Bossche J. Immunometabolism in the Single-Cell Era. *Cell Metab.* 2020;32(5):710-725. doi:10.1016/j.cmet.2020.09.013
29. Towers CG, Thorburn A. Therapeutic Targeting of Autophagy. *EBioMedicine.* 2016;14:15-23. doi:10.1016/j.ebiom.2016.10.034
30. Wang W, Fan J, Zhu G, et al. Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy. *Int J Nanomedicine.* 2020;15:2921-2933. Published 2020 Apr 24. doi:10.2147/IJN.S247443
31. Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. <https://doi.org/10.1002/cl2.1230>

How to cite this article: Dr. Suhena Sarkar, MD, Dr. Birupaksha Biswas, REPROGRAMMING CELL DEATH PATHWAYS FOR THERAPEUTIC GAIN, Asian J. Med. Res. Health Sci., 2026; 4 (1):99-106.

Source of Support: Nil, Conflicts of Interest: None declared.