

EFFECT OF VITAMIN – D SUPPLEMENTATION ON SERUM VITAMIN D AND CALCIUM LEVELS IN URBAN AND RURAL PREGNANT WOMEN

Srilekha V¹, N Jagannath², Moulali³

¹Assistant Professor, Department of Physiology, SVS Medical College, Mahabubnagar, Telangana.

²Assistant Professor, Department of Pharmacology, SVS Medical College, Mahabubnagar, Telangana.

³Assistant Professor, Department of Biochemistry, Vishwabharathi medical college, Kurnool.

ABSTRACT

Background: A normal level of vitamin D along with serum calcium levels during pregnancy is very important for foetal skeletal development, tooth enamel formation and perhaps general foetal growth and development. The present study aim is to find out the serum calcium levels in pregnant women based on their living area during the prenatal period. **Materials & methods:** It is a prospective study, done in 100 pregnant women who were allocated randomly into two groups based on living location. After giving 6000 IU of vitamin— D intervention, the calcium levels are measured at the end of 3 months and the variables were obtained before and after the intervention. **Results:** The mean difference of serum calcium levels 9.49±0.05, 8.97±0.025 in rural, urban pregnant women respectively after the vitamin - D supplementation [p<0.0001] after 3 months. **Conclusion:** Early intervention at reproductive age, fifth and seventh month of gestational age, regular screening and including in antenatal program, high dose of vitamin - D supplementation would be effective to prevent deficiency and improve the vitamin status.

Keywords: Hypocalcemia, Pregnancy, Rural women, Urban women, Serum calcium

INTRODUCTION

The vitamin D is considered as a vitamin in previous days and now a days it is considered as a hormone based on its vast actions on the human body and it is in two forms vitamin D2 / ergocalciferol and vitamin D3 / cholecalciferol and both has prohormone function[1]. During pregnancy the maternal vitamin D deficiency affects foetus normal development and globally it is considered as a major public health issue[2]. The risk factors for vitamin D deficiency are ethnicity, full skin covering, and excess usage of sun protectors, obesity, low dietary intake and smoking.

The development of the foetus depends on the maternal supply of vitamin D, calcium, phosphorus and other minerals which are transferred through the placenta. For this previous studies evidenced that maternal and cord blood vitamin D levels are highly correlated in their studies[3]. Previous studies found that vitamin D deficiency is high among adolescents and women of reproductive age[4]. The vitamin D deficiency has a major negative role on foetal development so estimation of vitamin D levels on maternal and perinatal periods supports the importance of vitamin D screening and treatment during pregnancy. Many people think that vitamin D deficiency is rare in countries with abundant sun light and it is disproved in many studies and it is evidenced with India has high prevalence of vitamin D deficiency [5-7]

The daily intake of the vitamin D is low both in urban and rural population of India and is not in line with the

eISSN: 2583-7761 Speciality: Physiology recommended daily/dietary allowances [RDA] issued by Indian Council of Medical Research which directly effects the serum calcium levels. The present supplementation recommendations are inadequate to ensure vitamin D sufficiency in pregnant and lactating women. Vitamin D deficiency is prevalent in both rural and urban population due to environmental difference, life style and nutritional balance and urban population is more vulnerable to vitamin D deficiency. The present study is undertaken to compare to the Vitamin D and serum calcium levels between urban and rural mothers.

MATERIALS & METHODS

Study design & study group: A prospective study was carried out on 100 pregnant women aged between 20-35 years. The study protocol was reviewed and approved by the Institutional Ethics committee of SVS Medical College & Hospital, and an approval number [IEC approval No. 02/2019] was obtained before starting the study.

Inclusion criteria: The participants were randomly selected who got pregnancy and gestation age between 1st trimester to 3rd trimester were recruited and allocated into urban group [50] and rural group [50] based on their living location.

Exclusion criteria: Pregnant women with endocrine disorders, hypertension, diabetes mellitus, a recent history of major surgeries and trauma were excluded from the study.

The study protocol's benefits were explained to all participants and clarified their willingness to withdraw from the study. A written informed consent document was obtained from all participants as well as from their guardians and adopted the recommendations of the Declaration of Helsinki guidelines [1975] and later amendments.

Correspondence: Dr. V. Srilekha, Assistant Professor, Department of Physiology, SVS Medical College, Mahabubnagar, Telangana – Mail: sreelekha5971@gmail.com, Mobile: +919866122930

All study group participants were interviewed about their pregnancy profile. As they have hypocalcemia, 6000 IU of Vitamin D3 was intravenously infused for three months. The dosage was adopted the recommendations and policies of vitamin D supplementation. No adverse effects were reported during the interventional period. Trained nurses carried out all the interventional procedures under the supervision of the fraternity from the gynecology department. The effectiveness of Vitamin D supplementation on calcium levels are measured O-Cresolpthale in complex one [OCPC] after three months in both the groups. Later Vitamin D levels were also measured using the CLIA method.

STATISTICAL ANALYSIS

The data sets were analyzed using R software and represented as Mean \pm SE values. The normality of data was tested using the Smirnov-Kolmogorov test. As the data sets were skewed, all non-parametric tests were implemented to compare the differences in calcium levels between the two groups.

Table-1: Comparison of the effectiveness of Vit - D supplementation on serum calcium levels.

Values are mean + SE: n = 50; Calcium = serum calcium [mg/dL].

S. No.	Comparisons	Groups	Calcium	Vitamin D			
1	Rural [Vitamin D supp]	Before	8.16 + 0.015	21.1 + 0.7			
	Urban [Vitamin D supp]	Before	7.86 + 0.008	22.4 + 0.7			
	Rural [Vitamin D supp]	After	9.49 + 0.005	27.0 + 0.9			
	Urban [Vitamin D supp]	After	8.97 + 0.025	30.6 + 0.7			
2	Significance among		F = 307.753	F = 4.477			
	groups [Control and Vit D Supp]		P < 0.001	P = 0.037			
	Significance among		F = 162.933	F = 187.723			
	tests [Before and After]		P < 0.001	P < 0.001			
	Significance in the interaction		F = 0.618	F = 9.227			
	[groups X tests]		P = 0.433	P = 0.003			
3	Significance be- tween Before		t = 12.174	t = 0.256			
	[Control and Vit D Supp]		P < 0.001	P = 0.798			
	Significance be-		t = 13.258	t = 3.375			
	tween After [Control and Vit D Supp]		P < 0.001	P < 0.001			
4	Significance within		t = 8.554	t = 7.615			
	Control [Before and After]		P < 0.001	P < 0.001			
	Significance within		t = 9.489	t = 11.722			
	Vit D Supp [Before and After]		P < 0.001	P < 0.001			

Vitamin $D = \text{serum vitamin } D \lceil IU/L \rceil$.

The 'F' and 'P' values are by two-way RM ANOVA with Bonferroni 't' test.

RESULTS

Table - 2: Serum calcium levels in rural and urban pregnant women

Group	Before [Mean±SE]	After [Mean±SE]	P – value
Rural [n=50]	8.16±0.015	9.49±0.005	< 0.0001
Urban [n=50]	7.86±0.008	8.97±0.025	<0.0001

The mean of Serum calcium levels of rural population before and after Vitamin D supplementation are 8.16 and 9.49. the urban population before and after vitamin D supplementation are 7.86, and 8.97 mg/dL respectively. Two way RM ANOVA revealed significant difference among the groups [before and after; within group comparison], and group X test interaction [P = 0.433, and P <0.001 respectively]. The rural before and urban before Vit D supplementation did not show statistical significance [P = 0.798]. The rural and urban after vitamin D supplementation after showed statistical significance [P < 0.001]. The rural before and after showed statistical significance [P < 0.001]. The vitamin D supplementation before and after also showed statistical significance [P < 0.001].

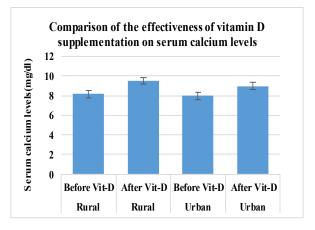


Fig -1: Comparison of the effectiveness of vitamin D supplementation on serum calcium levels

The values are mean + SE [n=50]

Two way analysis of variance with Bonferroni 't' test. Serum calcium levels in Rural population before and after Vitamin D supplementation - 8.18 + 0.05; 9.07 + 0.08

Serum calcium levels in Urban population before and after Vitamin D supplementation - 9.07 + 0.08;10.52 + 0.12

- Significantly increased from the respective control group [between groups comparison].
- Significantly increased from the respective before group [within groups comparison].

Tabrizi R, Moosazadeh M, Akbari M, Dabbaghmanesh MH, Mohamadkhani M, Asemi Z, et al. High Prevalence of vitamin D deficiency among Iranian population: a systematic review and meta-analysis. Iran J Med Sci. 2018; 43[2]:125-39.

Table-3: Vitamin - D levels in rural and urban pregnant wom-

Group	Before [Mean±SE]	After [Mean±SE]	P – value
Rural [n=50]	21.1 + 0.7	29.8 + 0.9	< 0.0001
Urban [n=50]	22.4 + 0.7	28.6 + 0.7	< 0.0001

The mean of vitamin D level of rural before Vitamin D, urban before vitamin D supplementation group, rural before Vitamin D and urban after vitamin D supplme tation group are 21.1, 22.4, 29.8 and 28.6mg/dL respectively. Two way RM ANOVA revealed significant difference among the groups (before and after; within group comparison), and group X test interaction [P = 0.037, P < 0.001 and P = 0.003 respectively]. The rural before and urban before Vit D supplementation did not show statistical significance [P = 0.798]. The rural and urban after vitamin D supplementation after showed statistical significance [P < 0.001]. The control before and after showed statistical significance [P < 0.001]. The vitamin D supplementation before and after also showed statistical significance [P < 0.001]. The rural before and after showed statistical significance [P < 0.001]. The vitamin D supplementation before and after also showed statistical significance [P < 0.001].

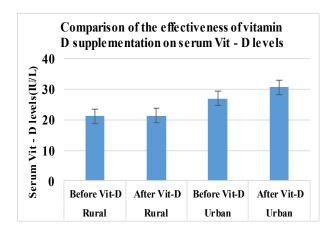


Fig -2: Comparison of the effectiveness of vitamin D supplementation on serum calcium levels

The values are mean + SE [n=50]

Two way analysis of variance with Bonferroni 't' test. Serum calcium levels in Rural population before and after Vitamin D supplementation - 21.1 + 0.7;29.8 + 0.9Serum calcium levels in Urban population before and after Vitamin D supplementation - 22.4 + 0.7;28.6 + 0.7

- Significantly increased from the respective control group [between groups comparison].
- Significantly increased from the respective before group [within groups comparison].

DISCUSSION

In most of developing countries due to insufficient intake, Vitamin D deficiency is most widely observed in pregnant mothers. Even in tropical country like India it is prevalent in both rural and urban people of all age

groups [6,7,11]. Vitamin -D depends on geographical location, poor living conditions, economic status and cultural factors [14,15]. Even people living in urban areas in developed countries who are in favour of living indoors, cultural factors were most of body is wrapped, dark skin people, improper ventilation too reported to suffer with poor vitamin D[16]. Immediate intervention is considered as according to current studies a population prevalence > 20% include under public health problem [17].

Earlier studies by Holmes et al, Kumar KJ et. al., Sachan et al and Marwaha et al found vitamin D concentrations were 80% - 96.3% lower in pregnant women compared to non-pregnant women[5,7,18]. Rural adult women have significantly higher Vitamin –D level than urban women [13]. Pregnant multiparous women along with inadequate Vitamin D are at high risk [19]. These findings are in line with present study as two-thirds of pregnant women belong to low educated families and socio-economic ground, most of them were housewives.

Present study observed the co-relation between Vitamin – D Supplementation On Serum Calcium Levels In Urban And Rural Pregnant Women. The prevalence of vitamin D deficiency among pregnant women was irrespective of infection. The study was in line with previous studies[20]. Association between parity and vitamin D deficiency revealed nulliparous pregnant women were at high risk than multiparous pregnant women furthermore the risk was high in women in first trimester than women in second trimester of pregnancy. It might be due to hormonal and metabolic changes that occur during pregnancy. The skin colour too play a vital role, dark skin women have deficiency of vitamin D level when compared to women in western countries. These findings are in line with the present study[21,22]. Present study observed that pregnant Muslim women were found to have vitamin D deficiency more than others it may be due to religious and cultural activity these findings were similar to previous studies conducted in various Islamic countries[23,24].

Vit D causes stimulation of intestinal calcium and Phosphorus absorption, renal tubular calcium reabsorption and calcium mobilization from bone is done by activation of Vitamin D Receptor by 1,25[OH]2D which is helping in elevating serum calcium levels during pregnancy.

In the present prospective study, it was found pregnant women with normal vitamin D level which directly correlates with serum calcium levels had lower incidence of preeclampsia than others who had low level of vitamin D levels, this study was in line with other studies[25]. Active form of vitamin D can be synthesized from the inactive precursor due to presence of 1-hydroxylase in human brain. This indicates vitamin D also play key role in development of brain and neuropsychological development of children. This observation is similar with earlier studies [26].

CONCLUSION

Early intervention at reproductive age, fifth and seventh month of gestational age, regular screening and including in antenatal program, high dose of vitamin D supplementation would be effective to prevent deficiency and improve the vitamin status. Vitamin D depends on skin pigmentation, duration of sun exposure and body surface area exposed, cultural, occupational economic factors. So, awareness and knowledge of nutrition, fortified foods should be given considering long term health problems. Interventional studies are needed to know the effect of vitamin D on preeclampsia and development of brain

Conflict of interest: nil Sources of funding: nil

REFERENCES

- 1. Valero-Zanuya M, Hawkins-Carranza F: Metabolism, endogenous and exogenous sources of vitamin D. Rev Esp Enferm Metab Oseas 2007; 16: 63 –70.
- 2. De-Regil LM, Palacios C, Lombardo LK, Peña-Rosas JP: Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev 2016; 14: CD008873.
- 3. Rodda CP, Benson JE, Vincent AJ, Whitehead CL, Polykov A, Vollenhoven B: Maternal vitamin D supplementation during pregnancy prevents vitamin D deficiency in the newborn: an open-label randomized controlled trial. Clin Endocrinol [Oxf] 2015; 83: 363–368.
- Palacios C, De-Regil LM, Lombardo LK, Peña-Rosas JP: Vitamin D supplementation during pregnancy: updated meta-analysis on maternal outcomes. J Steroid Biochem Mol Biol 2016; 164: 148 –155.
- 5. Marwaha K, Tandon N, Chopra S, et al. Vitamin D status in pregnant Indian women across trimesters and different seasons and its correlation with neonatal serum 25-hydroxyvitamin D levels. Br J Nutr 2011; 106: 1383-389.
- 6. Sahu M, Bhatia V, Aggarwal A, et al. Vitamin D deficiency in rural girls and pregnant women despite abundant sunshine in northern India. Clin Endocrinol [Oxf] 2009; 70:680-684.
- 7. Sachan A, Gupta R, Das V, et al. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am J Clin Nutr 2005; 81:1060-64.
- 8. Kaushal M, Magon N. Vitamin D in pregnancy: A metabolic outlook. Indian J Endocrinol Metab 2013; 17:76-82.
- 9. Harinarayan C V, Ramalakshmi T, Prasad U V., et al. Vitamin D status in Andhra Pradesh: A population based study. Indian J Med Res2008; 127:211-18.
- Balasubramanian S. Vitamin D deficiency in breastfed infants & the need for routine vitamin D supplementation. Indian J Med Res 2011; 133:250-52.
- 11. Nurbazlin M, Chee WS, Rokiah P., et al. Effects of sun exposure on 25[OH] vitamin D concentration in urban and rural women in Malaysia. Asia Pac J Clin Nutr 2013; 22; 391-399.

- 12. Moy FM, Bulgiba A. High prevalence of vitamin D insufficiency and its association with obesity and metabolic syndrome among Malay adults in Kuala Lumpur, Malaysia. BMC Public Health.2011; 11:735.
- 13. Harinarayan C V , Ramalakshmi T, Prasad U V., et al. High prevalence of low dietary calcium, high phytate consumption, and vitamin D deficiency in healthy south Indians. Am J Clin Nutr2007; 85;1062-67.
- 14. Ono Y, Suzuki A, Kotake M, Zhang X, Nishi-waki-Yasuda K, Ishiwata Y, et al. Seasonal changes of serum 25-hydroxyvitamin D and intact parathyroid hormone levels in a normal Japanese population. J Bone Mineral Metab. 2005; 23 [2]:147–51.
- 15. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009; 20[11]:1807–20.
- 16. World Health Organization. Guideline: vitamin D supplementation in pregnant women.2012; Available in http://www.who.int/nutrition/publications/micronutrients/guidelines/vit_d_supp_pregnant_women/en/Accessed December 2018
- 17. Junaid K, Rehman A, Jolliffe DA, Wood K, Martineau AR. High prevalence of vitamin D deficiency among women of child-bearing age in Lahore Pakistan, associating with lack of sun exposure and illiteracy. BMC Women's Health. 2015; 15(1):83.
- 18. Holmes VA, Barnes MS, Alexander HD, et al. Vitamin D deficiency and insufficiency in pregnant women: a longitudinal study. Br J Nutr 2009; 102:876-81.
- 19. Moghraby SA, Al Shawaf T, Akiel A, Sedrani SH, El Idrissy AT, Al-Meshari AA. Parity and vitamin D metabolites. Ann Trop Paediatr. 1987; 7(3):210–3.
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O'Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64–71.
- Johnson, D.D.; Wagner, C.L.; Hulsey, T.C.; McNeil, R.B.; Ebeling, M.; Hollis, B.W. Vitamin D deficiency and insufficiency is common during pregnancy. Am. J. Perinatol. 2011; 28: 7–12.
- Van der Meer, I.M.; Karamali, N.S.; Boeke, A.J.P.; Lips, P.; Middelkoop, B.J.; Verhoeven, I.; Wuister, J.D. High prevalence of vitamin D deficiency in pregnant non-Western women in The Hague, Netherlands. Am. J. Clin. Nutr. 2006; 84: 350–353.

- 23. Tabrizi R, Moosazadeh M, Akbari M, Dabbaghmanesh MH, Mohamadkhani M, Asemi Z, et al. High Prevalence of vitamin D deficiency among Iranian population: a systematic review and meta-analysis. Iran J Med Sci. 2018; 43(2):125–39.
- Mirzakhani H, Litonjua AA, McElrath TF, O'Connor G, Lee-Parritz A, Iverson R et al. Early pregnancy vitamin D status and risk of preeclampsia. J Clin Invest 2016; 126:4702– 4715.
- 25. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ: Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29: 21–30.