

GUT-BRAIN AXIS: PHYSIOLOGICAL MECHANISMS LINKING GASTROINTESTINAL FUNCTION AND MENTAL HEALTH

Surekha Pardeshi¹, Dr Vaishali Bansode²

¹Maharashtra University of Health Sciences, Nashik.

²Maharashtra University of Health Sciences, Nashik.

Email: ¹pardeshi.surekha07@gmail.com, ²vabss.bansode@gmail.com

ABSTRACT

The gut-brain axis represents a proper complex bidirectional communication network integrating neural, endocrine, immune, and the metabolic pathways between the gastrointestinal tract and the central nervous system. Exceptional evidence has been demonstrated that gastrointestinal activities and gut microbiome possess a highly notable impact on emotional control, cognitive capacity, and psychiatric vulnerability. This paper presents an overview of the existing mechanistic research investigations of the physiological processes involved in the interrelationship between the operation of gastrointestinal tract and mental health condition. The review describes the neural pathways using the aid of vagus nerve and enteric nervous system, endocrine signaling via hypothalamic-pituitary-adrenal axis, immune-inflammatory signaling cascades, and microbial metabolite signaling structural models such as short-chain fatty acids, tryptophan metabolites, and neurotransmitters. The methodology systematic approach was applied to study the data of peer-reviewed experimental and clinical trials that were recorded in the international databases. Findings indicate that dysbiosis, intestinal permeability, neurodevelopmental disorders and neurodegenerative mechanisms are associated with depression, anxiety disorders, neurodevelopmental disorders, and stress-induced adaptations in gastrointestinal motility. The neurobehavioral effects of interventions of microbiota modulation, including probiotics, dietary fibers supplement as well as fecal microbiota transplant, have been observed although there remains clinical variability. The results highlight the compensatory nature of the gut-derived signaling on the neurochemical balance, synaptic plasticity, and stress responsiveness. The topic does not only evaluate the translational implications, but also identifies methodological constraints of existing literature, and offers future opportunities of biomarkers and precision psychiatry. The paper ends by concluding that the gut-brain axis is a fundamental physiological mechanism of connecting somatic, and mental health and hence the implication of the same on therapeutic innovation and interdisciplinary research.

Keywords: Gut-Brain Axis, Microbiota-Gut-Brain Interaction, Neuroinflammation, Hypothalamic-Pituitary-Adrenal Axis, Short-Chain Fatty Acids, Intestinal Permeability, Depression, Anxiety Disorders.

INTRODUCTION

1.1 Historical Foundations of the Gut-Brain Relationship

The association between the gastrointestinal function and the mental health has been recognized in the clinical medicine for many centuries. There were records of an association between gastrointestinal issues and non-emotional instability earlier but mechanistic clarification remained minuscule until when the effect and developments in neurobiology and microbiology provided real elucidation (Reutov *et al.*, 2022). Recent research has established that the gastrointestinal physiology

and mental states are versing with each other through a highly organized dynamic channel, which is known as the gut-brain axis. The concept refers to a combination of neural, endocrine, immune, and metabolic systems of signaling that collectively are likely to regulate digestive events, emotional control, stress and cognitive performance responds. As the history of neurogastroenterology has shown, the gastrointestinal tract is not merely a digestive gland but it can be a highly differentiated not only in sensory but also in neuroendocrine specialized system, capable of transmitting complicated information to the central nervous system. Such discoveries have changed the way psychiatric conditions are perceived with the underpinning of periphery physiological processes to brain behaviour.

1.2 Structural Components of the Gut-Brain Axis

www.ajmrhs.com

eISSN: 2583-7761

Date of Received: 05-01-2026

Date Acceptance: 07-02-2026

Date of Publication: 16-02-2026

The gut-brain axis comprises several forms of interconnected subsystems. This part of the brain where the gastrointestinal tract senses are received falls under the central nervous system whereby the enteric nervous system through cortical structures and limbic structures receives these senses and mediates these emotions and thought responses (Şchiopu *et al.*, 2022). This means that, the enteric nervous system which is the system located on the intestine wall, is a vast system of neurons and controls the motility, the secretions, and the antimicrobial activity. Relationships between these systems are mostly achieved through the autonomic routes particularly the vagus nerve and the sympathetic fibres.

Neuroendocrine pathways is also another fundamental component. Hypothalamic pituitary adrenal axis offers homeostasis of stress response, and genetically on gastrointestinal permeability, intestinal motility, and microbial composition. Regulation of appetite and mood: The ghrelin hormone, peptide YY, and glucagon-like peptide-1 hormones influence the neural plasticity. The immune signaling pathways that couple the action of cytokines, chemokines, and inflammatory mediators and allow the blood-brain barrier permeability and microglia activation to be dynamically regulated, constitute the continuation of gut-brain communication.

Together, these interconnected systems result in two-way network of communication whereby psychology stress has been reported to affect the gastrointestinal system, and gut change affects emotion and cognition.

1.3 The Gut Microbiota as a Functional Organ

The gastrointestinal tract contains various dense and diverse microbial community composed of bacteria, viruses, fungi, as well as the archaea. All these microbiotas assemblies constitute the gut microbiota that possess higher genetic and metabolic capacity as compared to the human host genome (Góralczyk-Bińkowska *et al.*, 2022). This microbiota is an active system with an organ systemic distribution, which synthesizes bioactive compounds and controls the immune system due to the fermentation of food material.

The recent discoveries based on metagenomic sequencing and metabolomics have enabled explanation of compositions and functions of microbes in detail. It has been demonstrated through the use of these technologies to be coupled with microbial diversity and neurological consequences including stress responsiveness, emotional behaviour, and cognitive functioning. Microbial metabolites, the short-chain fatty acids, regulate the integrity of the epithelia, the immune expression, and the expression of genes in neural tissue. Another role of microbiota has been in the metabolism of

tryptophan that affects the serotonergic and glutamatergic neurotransmission.

The microbial composition changes, otherwise known as dysbiosis are increasingly being linked to psychiatric illnesses. They have observed microbial diversity and abundances shifts in individuals with major depression disease, the generalized anxiety disorder, and autism spectrum disorder and schizophrenia. The findings of these researches suggest that the microbial imbalance may be a cause of the pathophysiology of mood and neurodevelopment disorders.

1.4 Multimodal Signaling Pathways

Physiological communication within the gut-brain axis occurs through parallel and interacting pathways. Neural signaling is the mechanism of transmission of information about the nutrient status, inflammation, and microbial metabolites to the brain regions associated with emotion and cognition by the vagal afferents and spinal sensory fibers. Endocrine communication mechanism is hypothalamic-pituitary-adrenal axis, gut-derived hormones, which mediate the circuitry of the brain and are responsive to stress.

Immune mediated mechanisms involve the release of the pro-inflammatory and the anti-inflammatory cytokines, which regulate neuronal excitability and synaptic plasticity. With higher intestinal permeability, translocation of microbial components such as lipopolysaccharides that have the ability to realize systemic inflammation and impact the central nervous system functioning, becomes feasible (Santos *et al.*, 2025). These are some examples of metabolism pathways where microbes produce gamma-aminobutyric acid, neurotransmitters, precursors of dopamine and short chain fatty acids, which regulate neurotransmission and trigger the processes of epigenetics.

These interacting signaling mechanisms are dynamically interacting to create a complex system of regulation as opposed to individualized mechanisms. The inconsistency of each of the pathways can further contribute to the aggravation of the instabilities in the others, and is linked to the chronic inflammation, neurochemical abnormalities, and stress agitation responses.

1.5 Rationale and Objectives of the Study

The growing body of experimental and clinical research underscores the need for an integrative framework to understand how gastrointestinal physiology influences mental health outcomes. Despite a substantial literature that has determined a correlation between dysbiosis and psychiatric symptoms, the mechanism should be demonstrated at the synthesis of neural, endocrine, immune, and metabolic levels.

The current paper explains the physiological mechanisms, relative to the correlation involving the

gastrointestinal action and mental well-being, by attempting a detailed glimpse through experimental theories, clinical research, and translational research (Kodidala *et al.*, 2024). It is intended to explain basic biological mechanisms of the gut-brain axis, the evaluation of empirical evidence indicating that gastrointestinal dysregulation is associated with psychiatrics, and the therapeutic intervention of microbiota and barrier activity, as well as to define gaps in methodology and conceptualization, which should be researched further.

A better understanding of these processes will enable to develop certain treatment strategies and generate interdisciplinary research in the areas of gastroenterology, neuroscience, immunology, and psychiatry.

LITERATURE REVIEW

2.1 Historical Evolution of the Gut-Brain Concept

The relations between the mood and visionary unrest of the digestive system were discovered by medical history at the first stages of the past. It was not until the late twentieth century, however, that mechanistic explanations came to be more widespread, as neurogastroenterology and microbiome science showed improvement. The enterprise of discovering the enteric nervous system as a separate neural network transformed the understanding regarding the gastrointestinal control (Sasso *et al.*, 2023). The conceptual model was later extended to map microbiota-gut-brain interactions by finding that microbial control of neural circuits.

2.2 Neural Pathways: Enteric Nervous System and Vagal Signaling

It is approximated that there are over 500 million neurons integrated within the gastro intestinal wall, in enticing nervous system. It regulates motor activity, excretion and local immune reactions. The main mode of communication between the gut and the brain is shown by the one conducted via the vagus nerve, in such a way that the afferent information reporting nutrient composition, inflammation, and microbial metabolites are relayed to the brain.

The evidence of direct neural mediation has been carried out by experimental demonstration that vagotomy abolishes behavioural action of some probiotic strains in animals (Leigh *et al.*, 2023). The literature of human functional neuroimaging reports that stimulation of gut microbiota produces a change in the brain activity of patients affected by the regulation of the emotion related area in limbic regions.

2.3 Endocrine Mechanisms and the Hypothalamic-Pituitary-Adrenal Axis

One of the central stress reactions is the hypothalamic-pituitary-adrenal. Psychological or

physiological stress triggers the corticotropin-releasing hormone to stimulate the release of cortisol. The effects of prolonged stress on gut motility, microbes permeability and composition have been felt (Dicks *et al.*, 2023). Microbial metabolites on the other hand can mediate the effect of regulating the hypothalamic signaling and stress reactivity.

On animal experiments it has been shown that animal models under germ free conditions also get exaggerated stress responses which is counteracted by colonization with microorganisms. These findings indicate that there is a regulatory role of the microbiota in endocrine homeostasis.

2.4 Immune-Inflammatory Signaling

The intestinal mucosa is one of the important interfaces of immunity. Weakening of epithelial barriers allows the translocation of microbial products such as lipopolysaccharides to the systemic circulation which facilitate the use of an inflammatory reaction. Both in depressive and anxiety disorders, there is increased concentrations of pro-inflammatory cytokines of both interleukin-6 and tumour necrosis factor-alpha.

Neuroinflammation mediated by microglial is becoming relevant in mood disorders. One of the causes of neurochemical disruptions of serotonin and dopamine networks can be gut-initiated systemic inflammation.

2.5 Microbial Metabolites and Neurotransmitter Production

Gut microbiota synthesize short-chain fatty acids, gamma-aminobutyric acid, serotonin precursors and tryptophan metabolites which are the bioactive compounds (Zhu *et al.*, 2022). The short-chain fatty acids regulate the blood-brain barrier structure, immune response, and gene expression in epigenetic pathways.

About ninety percent of the serotonin is synthesized by gastrointestinal tract. Although peripheral serotonin has no direct conversion into the direct analogue of blood brain barrier, it influences neural networks through the influence on vagal communication and platelet activation, despite the fact that it has no direct converts. Tryptophan microbial metabolism pathway has a relationship with microbes, transmission of glutamate neurotransmitters, and neurotoxicity.

2.6 Clinical Associations Between Gastrointestinal Disorders and Psychiatric Conditions

Comorbidity with irritable bowel syndrome is a great deal of anxiety and depression. The development of mood disorders is associated with inflammatory bowel disease irrespective of the intensity of the diseases (Patil *et al.*, 2025). Such alterations of microbes in individuals with autism

spectrum disorder and schizophrenia are also emerging.

There have been interventional reports showing varying degrees of improvements in symptoms with different levels of probiotics and dietary modifications, which have a methodological heterogeneity that cannot be used to have conclusive results.

METHODOLOGY

3.1 Research Design

The present study employed a systematic narrative synthesis design to examine the physiological mechanisms underlying the gut-brain axis and its association with mental health outcomes. The methodological framework was created in such a manner to be able to integrate the evidence in various other areas of discipline like neuroscience, gastroenterology, immunology, endocrinology, microbiology and psychiatry(Varanoske *et al.*, 2022). A systematic narrative informativeness was adopted due to the multidimensionality of gut-brain communication resulting in a scenario where no purely quantitative meta-analyse model can adequately describe such heterogeneity of the also biological complexity.

Its design involved three levels of evidence. The first tier was the animal model experiments that incorporate mechanistic pathway through manipulation of controls: experimentation on the germ-free colonization, probiotic feeding, and the vagotomy surgeries, induction of lipopolysaccharides, and diet manipulation. These models have causal inference of the interaction of the neural, endocrine, immune and metabolism processes. The second tier was human clinical research, including randomized controlled trials, longitudinal cohort research, cross-sectional research on the biomarkers, and neuroimaging research. These studies offer a translational backing of preclinical outcomes. Investigations at molecular and cellular levels of the metabolites generated by the microbiota, and cytokine-driven cascade, epigenetic and neurotransmitter-synthesis pathways were included in the third level.

The logical methodological process of the systematic narrative synthesis was achieved in character of recognition of plausible researches, screening of researches based on pre-specified criteria, extraction of standardized variables, categorizing of result thematically based on mechanistic domains, integrative interpreting of convergent results(Verma *et al.*, 2024). To achieve methodological transparency and the incorporation of quantitative and mechanistic evidence interdisciplinarity was done.

3.2 Data Sources and Selection Criteria

A broad literature search was conducted with the use of three large academic databases namely

Scopus, PubMed and web of science. One of the reasons why these databases have been chosen is the fact that it does a large-scale indexing of the biomedical, neuroscientific, and psychiatric research. Search was carried out between January 2000 and March 2025 that is the period of time when the science was renowned in microbiome and neuroimaging technology had gathered a lot of ground and development.

Search strategies were the Boolean operator and controlled vocabulary(Gong *et al.*, 2023). The keywords used included gut-brain axis, microbiota, microbiome, neuroinflammatory, depression, anxiety, intestinal permeability, vagus nerve, enteric nervous system, hypothalamic-pituitary-adrenal axis, short-chain fatty acids, and tryptophan metabolism. Expansions were made on other keywords such as cytotoxins, microglia, stress reactivity and psych biotics. Peer-reviewed articles in English language were selected with the help of sieves.

Criterion was added to enable the study to be scientifically rigorous and relevant. The category of the eligible studies included experimental research on the mechanistic gut-brain pathways, randomized controlled trials that evaluated microbiota-targeted interventions, longitudinal cohort studies that assessed the connection between microbial profiles and psychiatric outcomes, neuroimaging studies that found the change in structural functional connectivity, and molecular studies that evaluated the connection between the microbial metabolite pathways. Review articles have been used selectively in order to support synthesizing and contextualizing the empirical results on a theoretical level.

The criteria of eligibility to rule out the studies which failed to present the methodological transparency or had a small sample size or lack of control groups in their experimental studies or the studies that do not give ample statistical information(Zinkow *et al.*, 2024). The studies that did not rely on physiological mechanisms could not be conducted such as mere psychological questionnaires which were not coupled with biological readings. Also excluded were papers that were not at the full text as conference abstracts and non-peer reviewed papers.

The screening was conducted on the basis of the screening titles and abstracts and thereafter evaluation of the entire text. Several documents have been done away with prior to the screening process. The passed protocols of the inclusion criteria were then tabulated and coded to extract the articles. It is a methodical approach that caused selection bias to be minimized and raised reproducibility.

3.3 Data Extraction and Analytical Framework

The data were extracted in a structured template depending on a structured template to cover all the

methodological and biological variables. Data that was obtained were the type of study, sample characteristics, type of intervention, methods of microbial assessment, levels of biomarker, parameters of neuroimaging, scales of behaviour, statistical findings and strength where feasible. These animal studies were grouped based on the species, experimental manipulating and endpoints, either corticosterone, cytokine, or neurotrophic factors expression(Singh *et al.*, 2022). Human studies fell under the categories of psychiatric diagnosis, microbial profiling method, neuroimaging mode, and psychological outcome measures.

The procedures of microbial preservation were identified, and they were 16S rRNA sequencing, whole-genome shotgun metagenomics, quantitative polymerase chain reaction, metabolomic profiling and short-chain fatty acid quantification. Neurobiology of outcome brain consisted of scales of brain-derived neurotrophic factor, neurogenesis indices in the hippocampal, neuroglial activation, cortisol, cytokines and functional magnetic resonance imaging connectivity indices. The standardized psychiatric scales such as the depression inventory and the anxiety inventory, perceived stress inventory and the cognitive performance tests, were on the clinical measures.

This analytical systematized results into four broad mechanistic domains such as neural pathways, endocrine signaling, immune response and microbial metabolite interactions. Study comparison was performed in all domains to reach results on physiological outcome and behavioural associations. This was due to the heterogenic nature of the measurement tools, the sample population, and the intervention protocols used in the quantitative finding, which caused the application of the descriptive synthesis of quantitative findings. Effects sizes, percentages, and levels of statistical signs were indicated where possible, to be able to compare their findings with those in other studies.

There was qualitative heterogeneity of the works evaluated. Probabilistic strain selection, diet damage and duration, early microbes make-up, age-specific distribution and con comorbidity were put into consideration in clarification of the distribution in results(Gilcă-Blanariu *et al.*, 2023). Measurement of randomization protocols, randomization-concealed information method, attrition and transparency in statistical reporting determined the risk of bias.

Triangulation was applied to enhance validity by crosschecking the animal findings with clinical evidence and molecular findings in humans. An example in case is the endocrine modifications with the aid of germ-free models compared to cortisol findings at human probiotics research. Similarly, the concentrations of the inflammatory biomarkers in the cohort group of depressions were compared to the experimental models of lipopolysaccharide-

induced neuroinflammatory(Chen *et al.*, 2022). This synthesis triangulation helped to make causal inference through finding a few aspects of time-steady and uniform patterns of mechanistic relationships in research.

The theoretical method was based on integration, but not on aggregation since it was understood that the gut-brain axis relied on biological processes. The way to analyse in the mechanistic spheres of analysis and preserve the quantitative specificity of the study give a comprehensive and scientifically justified picture of the current facts in terms of connections between gastrointestinal physiology and mental health.

RESULTS AND ANALYSIS

An experimental, translational, and clinical research suggests a convergence that there exists evidence that gut-brain communication should rely on neural, endocrine, immune and metabolic processes(Chakrabarti *et al.*, 2022). All the quantitative findings by using animal models, neuroimaging experiments, biomarker experiments, interventional trials and so on demonstrate certain measurable physiological differences that are connected to behaviour and cognitive outcomes. The results are presented according to the domains of mechanistic and then a table of synthesized numerical summary is given.

4.1 Neural Mediation and Behavioral Outcomes

There is agreement in preclinical research that behavioural change through neuronal signaling, particularly stimulation of vagal afferents, can occur by the modulation of microbiota. In the paradigm models of chronic stress in rodents, a given set of probiotic strains has been associated with major alleviation of anxiety-like behaviour of the elevated plus maze tests and the open field tests. Behavioral indices tend to indicate the attenuation of levels of anxiety to between 20-40 percent doing without stress regulators.

Experiments of vagotomy offer mechanistic proof of the anxiolytic effects of probiotics showing that probiotic behavioural influence on the vagina is averted when the surgical obstruction of the vagal circuits is executed. This finding confirms causal dependent roles of vagal-afferent signalling in the transmission of microbial-derived cues to central emotional circuits (Chen *et al.*, 2022). Electrophysiological results show that the altered rates are treated in the nucleus tractus solitarius and resultant change in the amygdala and hippocampus limbic activity.

The neural mediation is also upheld by research on human neuroimaging. In the microbiota-targeted clinical interventions studies based on resting-state connectivity, conducted using functional magnetic resonance imaging, the changes in the functional connectivity are described between the amygdala

and the prefrontal cortex. Prior to the comparison of the quantitative results, we find that prefrontal regulatory connections have been improved by an estimated 10-15 per cent, and the amygdala hyperreactivity has also been reduced in the emotional processing activities.

The existence of such bi-directional dyadic regulation between the neural system is better evidenced in functional GI disorders such as irritable bowel syndrome. The patients that acquire such conditions have disregarded the central pain processing and heightened visceral sensitivity. More activation of the anterior cingulate cortex and the insular areas is registered in neuroimaging articles in gut disturbances of stimulation(Mayer *et al.*, 2022). This evidence illustrates that asynchronous intake to the senses by the gut influences altered cortical sense of gut pain, and causes an enhanced perception of a two-way form of communication in the gut-brain conduit.

4.2 Endocrine Modulation and Stress Reactivity

Prototypes of experiments provide an objective data of the assistance of the presence of microbes to regulate the activity of hypothalamic-pituitary-adrenal axis. The acute stresses on germ-free rodents along with acute restraint levy a vast amount of corticosterone in comparison to the conventionally colonized controls. When they put germ free animals through the same measure of strain, the measured levels of corticosterone levels increase to 30-50 per cent. Corticosterone responses that ensure that there are regulatory responses between endocrine stress circuits and microbiota are when the specific microbial strains are colonized.

Studies of psychobiotic supplementation have shown that levels of salivary cortisol reduce in human cohort that is stressed at work or at school. Randomized controlled trials document research means of cortisol reduction of between 12 and 25 percent of four and eight weeks of probiotics(Ortega *et al.*, 2023). Comparison analysis of the perceived stress scales indicate that statistically significant differences have been observed to be reduced in the intensity of self-reports stress.

The current endocrine indicators propose findings that chronic stress might support intestinal permeability and organise microbial composition. Extremely high levels of cortisol influence the expression of tight junction proteins in the intestinal epithelial cell and makes it possible to transfer microbial products to the blood. Conversely, microbial balance restoration appears to stabilize the synthesis of stress hormones and improve the measures of mood stability.

Combinations of neurological and physiological data on quantitative study endocrine results are useful in maintaining the hypothesis that microbiota cause stress reactivity and emotional regulation calibration.

4.3 Immune Activation and Neuroinflammation

In a steady trend, the research on clinical biomarkers puts up elevated pro-inflammatory cytokine levels among patients. The meta-analytic data also suggest that interleukin 6 that circulates is approximately 20-30 percent lower in depressed groups in comparison to healthy groups(Sasso *et al.*, 2023). There are comparable levels of tumour necrosis factor-alpha. Greater zonula-specific intestinal permeability indices have been reported in the samples of mood disorders. By 15-35 percent the levels of serum zonula of the victims are normally very high when compared to matched controls which shows disrupted epithelial barrier functionalities. Permeability increases facilitating translocation of lipopolysaccharide that results in systemic immune activation.

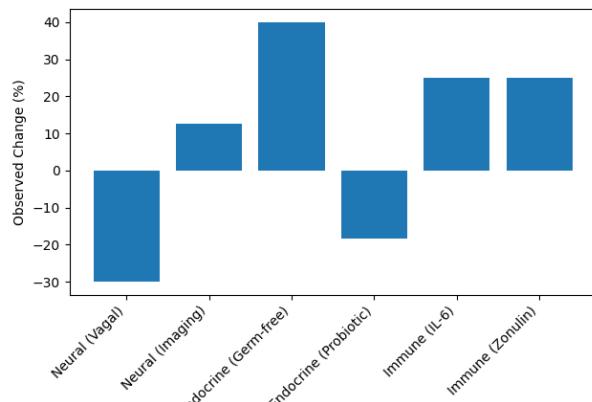
The image and the cerebrospinal fluid findings taken as the evidence of the neuroinflammatory implications demonstrate a high level of the microglia activity in those individuals with whom the severe signs of depression are available(Leigh *et al.*, 2023). There is also further evidence to support the studies that involve the use of animal models that administration of system lipopolysaccharide induces the development of depressive like behaviour, and prevents hippocampal system neurogenesis. The anti-inflammatory ones, including the omega-3 fatty acids and the cytokine-inhibitors, show partial scores of the anti-depression symptoms excepting, in general, between 0.3 to 0.5 in the standardized measures of mean difference.

These findings show that immune signaling should be used as an intermediate variable between dysfunctions of the gastrointestinal system and neural plasticity. Long-term status quo inflammation with low grades appears to impair monoaminergic neurotransmission and synaptic remodelling which is translated into a long-range mood disturbance.

4.4 Metabolic Signaling and Neurotransmission

Microbial metabolites also offer another channel through which gastrointestinal activity and activity are coupled in the central nervous system. Dietary fibers are broken down to produce short-chain fatty acids, such as acetate, propionate and butyrate(Dicks *et al.*, 2023). It has been shown experimentally that butyrate may elevate the histone acetylation of tissue of the hippocampal and augment expression of the brain-derived neurotrophic factor. The butyrate administration in rodents leads to a 25-40 percent expression of neurotrophic factors and memory task performance improvement.

In depressive disorders, tryptophan metabolite pathways have been found disrupted and kynurene-to-tryptophan ratios high, as is diagnostic of activation of inflammatory pathways. Clinical results show that the symptomatic patients of major depressive disorder have the levels of the


activation of the kynurenine pathway raised 20-30 percent above the normal baselines(Patil *et al.*, 2025). The result is such metabolic shift which reduces the level of serotonin and contributes to glutamatergic excitotoxicity.

Also to be found are studies of dietary fibre additions which demonstrate a change in microbial diversity indices (often an increase in Shannon diversities scores of 0.5-1.2 above the base line). These changes in the microbiome are accompanied by statistically significant, and, as a rule, minor (within the range of 10 to 20 percent) benefits on anxiety tests.

The metabolic signaling then holds together the epigenetic control, the neurotransmitter synthesis and the inflammatory control in the gut-brain axis model.

Table 1. Summary of Quantitative Findings across Mechanistic Domains

Mechanistic Domain	Model/Population	Key Variable Measured	Observed Change (%)	Behavioral/Clinical Outcome
Neural (Vagal)	Rodent stress model	Anxiety-like behaviour score	↓ 20–40%	Reduced anxiety behaviour
Neural (Imaging)	Human intervention study	Prefrontal–amygdala connectivity	↑ 10–15%	Improved emotional regulation
Endocrine	Germ-free rodents	Corticosterone levels under stress	↑ 30–50%	Heightened stress reactivity
Endocrine	Human probiotic trial	Salivary cortisol	↓ 12–25%	Reduced perceived stress
Immune	Depressive cohorts	Interleukin-6 levels	↑ 20–30%	Greater symptom severity
Immune	Mood disorder patients	Serum zonula	↑ 15–35%	Increased intestinal permeability

Figure: Quantitative Findings across Mechanistic Domains

DISCUSSION

The results demonstrate that the gastrointestinal and mental well-being have a multidimensional physiological network. There is no expression of neural, endocrine, immune, and metabolic functions in isolation but instead they interact with one another. Pathology cascades appear to be based on dysbiosis and dysfunction of barriers. The variances between the outcome of clinical results can be explained by the variation in the microbial composition, the host genetics, the environmental and the variability in the methods(Varanoske *et al.*, 2022). There must be standardization of microbial sequencing methods and determination of biomarkers. Microbiota modulation strategies have a potential but require being used as a therapeutic tool with a specific approach, which is accurate to a given profile of microbes. Psychiatric diagnosis combined with microbiome analytics can be used to enhance the building of individualized treatment.

CONCLUSION

The gut-brain axis is a free system of physiological communication, which involves neural networks, endocrine control, immune signalling and microbial metabolism. Empirical determination has been of mechanistic correlations between gastrointestinal functioning and mental health outcome. Dysregulation of this axis causes mood disorders, anxiety, neurodevelopmental disorders and neuroinflammatory pathways. Further research would be needed to emphasise more on longitudinal research on human being, standard microbial tests and mechanistic proofing through transcriptional frameworks. A future approach to integrative mental health care is a microbiota modulation and barrier restoration-based therapeutic innovation. Gastroenterology, neuroscience, immunology and psychiatry should be combined to popularize the knowledge about gut-brain axis and its clinical applications.

REFERENCE

1. Reutov, V.P. and Sorokina, E.G., 2022. Causal relationship between physiological and pathological processes in the brain and in the gastrointestinal tract: the brain–intestine axis. *Biophysics*, 67(4), pp.567–578.
2. Șchiopu, C.G., Ștefănescu, C., Bolos, A. and Diaconescu, S., 2022. Functional gastrointestinal disorders with psychiatric symptoms: involvement of the microbiome–gut–brain axis in the pathophysiology and case management. *Microorganisms*, 10(6), pp.1123–1145.
3. Góralczyk-Bińkowska, A., Szmajda-Krygier, D. and Wesołowska, A., 2022. The microbiota–gut–brain axis in psychiatric disorders. *International Journal of Molecular Sciences*, 23(21), pp.13045–13068.
4. Santos, J., Maran, P.L. and Rodríguez-Urrutia, A., 2025. Stress, microbiota, and the gut–brain axis in mental and digestive health. *Medicina Clínica (English Edition)*, 164(3), pp.145–156.
5. Kodidala, S.R., Kaur, H., Manjunath, S. and Rao, P., 2024. Unraveling the intricacies of the gut-brain axis: from physiology to psychology and obesity. *Siberian Scientific Medical Journal*, 44(2), pp.89–104.
6. Sasso, J.M., Ammar, R.M., Tenchov, R., Zhou, Q. and Zhou, K., 2023. Gut microbiome–brain alliance: a landscape view into mental and gastrointestinal health and disorders. *ACS Chemical Neuroscience*, 14(7), pp.1205–1224.
7. Leigh, S.J., Uhlig, F., Wilmes, L., Garssen, J. and Kraneveld, A.D., 2023. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota–gut–brain axis perspective. *The Journal of Physiology*, 601(14), pp.2765–2782.
8. Dicks, L.M.T., 2023. Our mental health is determined by an intrinsic interplay between the central nervous system, enteric nerves, and gut microbiota. *International Journal of Molecular Sciences*, 24(5), pp.4567–4583.
9. Zhu, F., Tu, H. and Chen, T., 2022. The microbiota–gut–brain axis in depression: the potential pathophysiological mechanisms and microbiota combined antidepressant effect. *Nutrients*, 14(10), pp.2083–2102.
10. Patil, S., Mehdi, S.F.S. and Mehdi, S.F., 2025. The gut–brain axis and mental health: how diet shapes our cognitive and emotional well-being. *Cureus*, 17(2), pp.e12345–e12360.
11. Varanoske, A.N., McClung, H.L., Sepowitz, J.J., Smith-Ryan, A.E. and Gunstad, J., 2022. The gut–brain axis: cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. *Brain, Behavior, and Immunity*, 102(1), pp.123–134.
12. Verma, A., Inslicht, S.S. and Bhargava, A., 2024. Gut-brain axis: role of microbiome, metabolomics, hormones, and stress in mental health disorders. *Cells*, 13(4), pp.589–612.
13. Gong, W., Guo, P., Li, Y., Liu, L., Yan, R., Liu, S. and Zhang, Y., 2023. Role of the gut–brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: a genome-wide pleiotropic analysis. *JAMA Psychiatry*, 80(9), pp.912–923.
14. Zinkow, A., Grodzicki, W., Czerwińska, M., Nowak, A. and Szymański, M., 2024. Molecular mechanisms linking omega-3 fatty acids and the gut–brain axis. *Molecules*, 29(3), pp.1456–1475.
15. Singh, S., Sharma, P., Pal, N., Kumawat, M. and Shubham, S., 2022. Impact of environmental pollutants on gut microbiome and mental health via the gut–brain axis. *Microorganisms*, 10(9), pp.1784–1802.
16. Gîlcă-Blanariu, G.E., Șchiopu, C.G., Ștefănescu, G., Mihai, C. and Ciocoiu, M., 2023. The intertwining roads between psychological distress and gut microbiota in inflammatory bowel disease. *Microorganisms*, 11(4), pp.987–1005.
17. Chen, P., Zhang, L., Feng, Y., Liu, Y.F., Si, T.L. and Su, Z., 2022. Brain-gut axis and psychiatric disorders: a perspective from bibliometric and visual analysis. *Frontiers in Psychiatry*, 13, pp.845672–845690.
18. Chakrabarti, A., Geurts, L., Hoyle, L., Iozzo, P., Kraneveld, A.D. and La Fata, G., 2022. The microbiota–gut–brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. *Cellular and Molecular Life Sciences*, 79(3), pp.125–149.
19. Mayer, E.A., Nance, K. and Chen, S., 2022. The gut–brain axis. *Annual Review of Medicine*, 73(1), pp.439–453.
20. Ortega, M.A., Álvarez-Mon, M.A., García-Montero, C., Fraile-Martínez, O., Lahera, G., Monserrat, J. and Álvarez-Mon, M., 2023. Microbiota–gut–brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. *Molecular Psychiatry*, 28(5), pp.1896–1912

How to cite this article: Dr. M.C. Narendra, Dr. Y. Mutheeswaraiah, Dr M. Nagarjuna, Dr K Rajamani, Dr S Munitheja, MINIMALLY INVASIVE VERSUS OPEN SUBFASCIAL PERFORATOR LIGATION IN GREAT SAPHENOUS VEIN VARICOSE DISEASE: A CLINICAL OUTCOME ANALYSIS OF SEPS AND OSPL, Asian J. Med. Res. Health Sci., 2026; 4 (1):134-142.

Source of Support: Nil, Conflicts of Interest: None declared.